Datei:Basilica Julia set with binary decomposition.png
Seiteninhalte werden in anderen Sprachen nicht unterstützt.
Werkzeuge
Allgemein
Drucken/exportieren
In anderen Projekten
Erscheinungsbild
Aus Wikibooks
Größe dieser Vorschau: 600 × 600 Pixel. Weitere Auflösungen: 240 × 240 Pixel | 480 × 480 Pixel | 768 × 768 Pixel | 1.024 × 1.024 Pixel | 2.000 × 2.000 Pixel.
Originaldatei zum Herunterladen (2.000 × 2.000 Pixel, Dateigröße: 418 KB, MIME-Typ: image/png)
Dieses Medium wird direkt von Wikimedia Commons aus eingebunden. Quellenangaben und Lizenzbedingungen befinden sich auf der unten zusätzlich eingeblendeten Commons-Beschreibungsseite.
Beschreibung
BeschreibungBasilica Julia set with binary decomposition.png |
English: Basilica Julia set with binary decomposition of both exterior and interior. Looks better when viewed in full size |
Datum | |
Quelle | Eigenes Werk |
Urheber | Adam majewski |
Andere Versionen |
|
Lizenz
Ich, der Urheber dieses Werkes, veröffentliche es unter der folgenden Lizenz:
Diese Datei ist lizenziert unter der Creative-Commons-Lizenz „Namensnennung – Weitergabe unter gleichen Bedingungen 4.0 international“.
- Dieses Werk darf von dir
- verbreitet werden – vervielfältigt, verbreitet und öffentlich zugänglich gemacht werden
- neu zusammengestellt werden – abgewandelt und bearbeitet werden
- Zu den folgenden Bedingungen:
- Namensnennung – Du musst angemessene Urheber- und Rechteangaben machen, einen Link zur Lizenz beifügen und angeben, ob Änderungen vorgenommen wurden. Diese Angaben dürfen in jeder angemessenen Art und Weise gemacht werden, allerdings nicht so, dass der Eindruck entsteht, der Lizenzgeber unterstütze gerade dich oder deine Nutzung besonders.
- Weitergabe unter gleichen Bedingungen – Wenn du das Material wiedermischst, transformierst oder darauf aufbaust, musst du deine Beiträge unter der gleichen oder einer kompatiblen Lizenz wie das Original verbreiten.
c src code
/*
Adam Majewski
adammaj1 aaattt o2 dot pl // o like oxygen not 0 like zero
console program in c programing language
==============================================
Structure of a program or how to analyze the program
============== Image X ========================
DrawImageOfX -> DrawPointOfX -> ComputeColorOfX -> IsInTheYTrap
first 2 functions are identical for every X
check only last function = ComputeColorOfX
which computes color of one pixel !
==========================================
-------------------------------
cd existing_folder
git init
git remote add origin git@gitlab.com:adammajewski/SepalsOfCauliflower.git
git add .
git commit
git push -u origin master
---------------------------------
indent d.c
default is gnu style
-------------------
c console progam
export OMP_DISPLAY_ENV="TRUE"
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out > b.txt
gcc d.c -lm -Wall -march=native -fopenmp
time ./a.out
time ./a.out >a.txt
----------------------
*/
#include <stdio.h>
#include <stdlib.h> // malloc
#include <string.h> // strcat
#include <math.h> // M_PI; needs -lm also
#include <complex.h>
#include <omp.h> // OpenMP
/* --------------------------------- global variables and consts ------------------------------------------------------------ */
// virtual 2D array and integer ( screen) coordinate
// Indexes of array starts from 0 not 1
//unsigned int ix, iy; // var
static unsigned int ixMin = 0; // Indexes of array starts from 0 not 1
static unsigned int ixMax; //
static unsigned int iWidth; // horizontal dimension of array
static unsigned int iyMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iyMax; //
static unsigned int iHeight = 10000; //
// The size of array has to be a positive constant integer
static unsigned int iSize; // = iWidth*iHeight;
// memmory 1D array
unsigned char *data;
unsigned char *edge;
// unsigned int i; // var = index of 1D array
//static unsigned int iMin = 0; // Indexes of array starts from 0 not 1
static unsigned int iMax; // = i2Dsize-1 =
// The size of array has to be a positive constant integer
// unsigned int i1Dsize ; // = i2Dsize = (iMax -iMin + 1) = ; 1D array with the same size as 2D array
static const double ZxMin = -2.0; //-0.05;
static const double ZxMax = 2.0; //0.75;
static const double ZyMin = -2.0; //-0.1;
static const double ZyMax = 2.0; //0.7;
static double PixelWidth; // =(ZxMax-ZxMin)/ixMax;
static double PixelHeight; // =(ZyMax-ZyMin)/iyMax;
static double ratio;
// complex numbers of parametr plane
double complex c; // parameter of function fc(z)=z^2 + c
static unsigned long int iterMax = 1000000; //iHeight*100;
static double ER = 200.0; // EscapeRadius for bailout test
double distanceMax;
//double D2MaxGlobal; //= 0.0497920256372717 ;
//double DistanceMaxGlobal2 ;
/* colors = shades of gray from 0 to 255 */
static unsigned char iColorOfExterior = 250;
static unsigned char iColorOfInterior = 200;
unsigned char iColorOfBoundary = 0;
double BoundaryWidth = 2.5;
/* ------------------------------------------ functions -------------------------------------------------------------*/
//------------------complex numbers -----------------------------------------------------
// fast cabs
double cabs2(complex double z) {
return (creal(z) * creal(z) + cimag(z) * cimag(z));
}
// from screen to world coordinate ; linear mapping
// uses global cons
double
GiveZx ( int ix)
{
return (ZxMin + ix * PixelWidth);
}
// uses globaal cons
double GiveZy (int iy) {
return (ZyMax - iy * PixelHeight);
} // reverse y axis
complex double GiveZ( int ix, int iy){
double Zx = GiveZx(ix);
double Zy = GiveZy(iy);
return Zx + Zy*I;
}
// ****************** DYNAMICS = trap tests ( target sets) ****************************
// bailout test
// z escapes when
// abs(z)> ER or cabs2(z)> ER2
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#Boolean_Escape_time
int Escapes(complex double z){
// here target set (trap) is the exterior circle with radsius = ER ( EscapeRadius)
// with ceter = origin z= 0
// on the Riemann sphere it is a circle with point at infinity as a center
if (cabs(z)>ER) return 1;
return 0;
}
/* ----------- array functions = drawing -------------- */
/* gives position of 2D point (ix,iy) in 1D array ; uses also global variable iWidth */
unsigned int Give_i (unsigned int ix, unsigned int iy)
{
return ix + iy * iWidth;
}
// ***********************************************************************************************
// ********************** edge detection usung Sobel filter ***************************************
// ***************************************************************************************************
// from Source to Destination
int ComputeBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
/* sobel filter */
unsigned char G, Gh, Gv;
// boundaries are in D array ( global var )
// clear D array
memset(D, iColorOfExterior, iSize*sizeof(*D)); // for heap-allocated arrays, where N is the number of elements = FillArrayWithColor(D , iColorOfExterior);
// printf(" find boundaries in S array using Sobel filter\n");
#pragma omp parallel for schedule(dynamic) private(i,iY,iX,Gv,Gh,G) shared(iyMax,ixMax)
for(iY=1;iY<iyMax-1;++iY){
for(iX=1;iX<ixMax-1;++iX){
Gv= S[Give_i(iX-1,iY+1)] + 2*S[Give_i(iX,iY+1)] + S[Give_i(iX-1,iY+1)] - S[Give_i(iX-1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX+1,iY-1)];
Gh= S[Give_i(iX+1,iY+1)] + 2*S[Give_i(iX+1,iY)] + S[Give_i(iX-1,iY-1)] - S[Give_i(iX+1,iY-1)] - 2*S[Give_i(iX-1,iY)] - S[Give_i(iX-1,iY-1)];
G = sqrt(Gh*Gh + Gv*Gv);
i= Give_i(iX,iY); /* compute index of 1D array from indices of 2D array */
if (G==0) {D[i]=255;} /* background */
else {D[i]=0;} /* boundary */
}
}
return 0;
}
// copy from Source to Destination
int CopyBoundaries(unsigned char S[], unsigned char D[])
{
unsigned int iX,iY; /* indices of 2D virtual array (image) = integer coordinate */
unsigned int i; /* index of 1D array */
//printf("copy boundaries from S array to D array \n");
for(iY=1;iY<iyMax-1;++iY)
for(iX=1;iX<ixMax-1;++iX)
{i= Give_i(iX,iY); if (S[i]==0) D[i]=0;}
return 0;
}
// ***************************************************************************************************************************
// ************************** DEM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfDEMJ(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ
int nMax = iterMax;
complex double dz = 1.0; // is first derivative with respect to z.
double distance;
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 1e60 || cabs(dz)> 1e60) break; // big values
if (cabsz< PixelWidth) return iColorOfInterior; // falls into finite attractor = interior
dz = 2.0*z * dz;
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
distance = 2.0 * cabsz* log(cabsz)/ cabs(dz);
if (distance <distanceMax) {//printf(" distance = %f \n", distance);
return iColorOfBoundary;}
return iColorOfExterior;
}
// plots raster point (ix,iy)
int DrawPointOfDEMJ (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfDEMJ(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfDEMJ (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfDEMJ(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** bondary*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfBoundary(complex double z){
// https://en.wikibooks.org/wiki/Fractals/Iterations_in_the_complex_plane/Julia_set#DEM.2FJ
int nMax = 20; // very low value
double cabsz;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > 10000000000*ER ) return iColorOfExterior; // big values
if (cabsz < (PixelWidth/100)) return iColorOfInterior; // falls into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
//printf("found \n");
return iColorOfBoundary;
}
// plots raster point (ix,iy)
int DrawPointOfBoundary (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfBoundary(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfBoundary (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
//printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfBoundary(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** LSM/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfLSM(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
iColor = 255 - 255.0 * ((double) n)/20; // nMax or lower walues in denominator
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfLSM (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfLSM(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfLSM (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfLSM(A, ix, iy); //
}
return 0;
}
// ***************************************************************************************************************************
// ************************** binary decomposition BD/J*****************************************
// ****************************************************************************************************************************
unsigned char ComputeColorOfBD(complex double z){
int nMax = 255;
double cabsz;
unsigned char iColor;
int n;
for (n=0; n < nMax; n++){ //forward iteration
cabsz = cabs(z);
if (cabsz > ER) break; // esacping
if (cabsz< PixelWidth) break; // fails into finite attractor = interior
z = z*z +c ; /* forward iteration : complex quadratic polynomial */
}
if (cimag(z)>0.0)
iColor = 255;
else iColor = 0;
return iColor;
}
// plots raster point (ix,iy)
int DrawPointOfBD (unsigned char A[], int ix, int iy)
{
int i; /* index of 1D array */
unsigned char iColor;
complex double z;
i = Give_i (ix, iy); /* compute index of 1D array from indices of 2D array */
z = GiveZ(ix,iy);
iColor = ComputeColorOfBD(z);
A[i] = iColor ; // interior
return 0;
}
// fill array
// uses global var : ...
// scanning complex plane
int DrawImagerOfBD (unsigned char A[])
{
unsigned int ix, iy; // pixel coordinate
//printf("compute image \n");
// for all pixels of image
#pragma omp parallel for schedule(dynamic) private(ix,iy) shared(A, ixMax , iyMax)
for (iy = iyMin; iy <= iyMax; ++iy){
printf (" %d from %d \r", iy, iyMax); //info
for (ix = ixMin; ix <= ixMax; ++ix)
DrawPointOfBD(A, ix, iy); //
}
return 0;
}
// *******************************************************************************************
// ********************************** save A array to pgm file ****************************
// *********************************************************************************************
int SaveArray2PGMFile( unsigned char A[], double k, char* comment )
{
FILE * fp;
const unsigned int MaxColorComponentValue=255; /* color component is coded from 0 to 255 ; it is 8 bit color file */
char name [100]; /* name of file */
snprintf(name, sizeof name, "%.10f", k); /* */
char *filename =strncat(name,".pgm", 4);
// save image to the pgm file
fp= fopen(filename,"wb"); // create new file,give it a name and open it in binary mode
fprintf(fp,"P5\n # %s\n %u %u\n %u\n", comment, iWidth, iHeight, MaxColorComponentValue); // write header to the file
fwrite(A,iSize,1,fp); // write array with image data bytes to the file in one step
fclose(fp);
// info
printf("File %s saved ", filename);
if (comment == NULL || strlen(comment) ==0)
printf("\n");
else printf (". Comment = %s \n", comment);
return 0;
}
int info ()
{
// display info messages
printf ("Numerical approximation of Julia set for fc(z)= z^2 + c \n");
//printf ("iPeriodParent = %d \n", iPeriodParent);
//printf ("iPeriodOfChild = %d \n", iPeriodChild);
printf ("parameter c = ( %.16f ; %.16f ) \n", creal(c), cimag(c));
printf ("Image Width = %f in world coordinate\n", ZxMax - ZxMin);
printf ("PixelWidth = %f \n", PixelWidth);
if ( distanceMax<0.0 || distanceMax > ER ) printf("bad distanceMax\n");
printf("distanceMax = %.16f\n", distanceMax);
// image corners in world coordinate
// center and radius
// center and zoom
// GradientRepetition
printf ("Maximal number of iterations = iterMax = %ld \n", iterMax);
printf ("ratio of image = %f ; it should be 1.000 ...\n", ratio);
//
printf("gcc version: %d.%d.%d\n",__GNUC__,__GNUC_MINOR__,__GNUC_PATCHLEVEL__); // https://stackoverflow.com/questions/20389193/how-do-i-check-my-gcc-c-compiler-version-for-my-eclipse
// OpenMP version is diplayed in the console
return 0;
}
// *****************************************************************************
//;;;;;;;;;;;;;;;;;;;;;; setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
// **************************************************************************************
int setup ()
{
printf ("setup start\n");
c = -1.0; //
/* 2D array ranges */
iWidth = iHeight;
iSize = iWidth * iHeight; // size = number of points in array
// iy
iyMax = iHeight - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
//ix
ixMax = iWidth - 1;
/* 1D array ranges */
// i1Dsize = i2Dsize; // 1D array with the same size as 2D array
iMax = iSize - 1; // Indexes of array starts from 0 not 1 so the highest elements of an array is = array_name[size-1].
/* Pixel sizes */
PixelWidth = (ZxMax - ZxMin) / ixMax; // ixMax = (iWidth-1) step between pixels in world coordinate
PixelHeight = (ZyMax - ZyMin) / iyMax;
ratio = ((ZxMax - ZxMin) / (ZyMax - ZyMin)) / ((float) iWidth / (float) iHeight); // it should be 1.000 ...
//ER2 = ER * ER; // for numerical optimisation in iteration
/* create dynamic 1D arrays for colors ( shades of gray ) */
data = malloc (iSize * sizeof (unsigned char));
edge = malloc (iSize * sizeof (unsigned char));
if (data == NULL || edge == NULL){
fprintf (stderr, " Could not allocate memory");
return 1;
}
distanceMax = BoundaryWidth*PixelWidth;
printf (" end of setup \n");
return 0;
} // ;;;;;;;;;;;;;;;;;;;;;;;;; end of the setup ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
int end(){
printf (" allways free memory (deallocate ) to avoid memory leaks \n"); // https://en.wikipedia.org/wiki/C_dynamic_memory_allocation
free (data);
free(edge);
info ();
return 0;
}
// ********************************************************************************************************************
/* ----------------------------------------- main -------------------------------------------------------------*/
// ********************************************************************************************************************
int main () {
setup ();
// ******************************** DEM/J **********************************************************
DrawImagerOfDEMJ(data);
SaveArray2PGMFile (data, iWidth+0.1, "boundary using DEM/J");
DrawImagerOfLSM(data);
SaveArray2PGMFile (data, iWidth+0.2, "LSM/J");
DrawImagerOfBD(data);
SaveArray2PGMFile (data, iWidth+0.3, "BD/J");
DrawImagerOfBoundary(data);
SaveArray2PGMFile (data, iWidth+0.4, "boundary using iteration");
end();
return 0;
}
test output:
setup start end of setup File 10000.1000000000.pgm saved . Comment = boundary using DEM/J File 10000.2000000000.pgm saved . Comment = LSM/J File 10000.3000000000.pgm saved . Comment = BD/J File 10000.4000000000.pgm saved . Comment = boundary using iteration allways free memory (deallocate ) to avoid memory leaks Numerical approximation of Julia set for fc(z)= z^2 + c parameter c = ( -1.0000000000000000 ; 0.0000000000000000 ) Image Width = 4.000000 in world coordinate PixelWidth = 0.000400 distanceMax = 0.0010001000100010 Maximal number of iterations = iterMax = 1000000 ratio of image = 1.000000 ; it should be 1.000 ... gcc version: 7.3.0
In dieser Datei abgebildete Objekte
Motiv
Einige Werte ohne einen Wikidata-Eintrag
6. Januar 2019
image/png
a442b0cc3e191682dd1cc4e7f768de4e6c1e3a29
428.275 Byte
2.000 Pixel
2.000 Pixel
Dateiversionen
Klicke auf einen Zeitpunkt, um diese Version zu laden.
Version vom | Vorschaubild | Maße | Benutzer | Kommentar | |
---|---|---|---|---|---|
aktuell | 15:55, 1. Aug. 2023 | 2.000 × 2.000 (418 KB) | Obscure2020 | Optimized with OxiPNG and ZopfliPNG. | |
05:30, 12. Jun. 2022 | 2.000 × 2.000 (524 KB) | Soul windsurfer | cimag, not creal | ||
16:25, 6. Jan. 2019 | 2.000 × 2.000 (514 KB) | Soul windsurfer | User created page with UploadWizard |
Dateiverwendung
Die folgenden 40 Seiten verwenden diese Datei:
- Mathematrix/ Arbeiten mit Termen
- Mathematrix/ Bilderverzeichnis
- Mathematrix/ Diagramme
- Mathematrix/ Differentialrechnung
- Mathematrix/ Einheiten
- Mathematrix/ Folgen
- Mathematrix/ Funktionen
- Mathematrix/ Geometrie der Ebene
- Mathematrix/ Geometrie des Raums
- Mathematrix/ Integralrechnung
- Mathematrix/ Lineare Gleichungssysteme
- Mathematrix/ Statistik und Wahrscheinlichkeitsrechnung
- Mathematrix/ Trigonometrische Funktionen
- Mathematrix/ Vektoren
- Mathematrix/ Zahlendarstellungen Mengentheorie und Aussagenlogik
- Mathematrix: AT AHS/ Aufgaben alle/ 00
- Mathematrix: AT AHS/ Prüfungsbeispiele/ Trigonometrie
- Mathematrix: AT AHS/ Prüfungsbeispiele/ Vektoren
- Mathematrix: AT AHS/ Theorie/ Klasse 5
- Mathematrix: AT AHS/ Theorie nach Thema/ Lineare Gleichungssysteme
- Mathematrix: AT AHS/ Theorie nach Thema/ Trigonometrische Funktionen
- Mathematrix: AT BRP/ Aufgaben/ Grundniveau 1
- Mathematrix: AT BRP/ Prüfungsbeispiele/ Einheiten und Zahlendarstellung
- Mathematrix: AT BRP/ Prüfungsbeispiele/ Folgen
- Mathematrix: AT BRP/ Prüfungsbeispiele/ Vektoren
- Mathematrix: AT BRP/ Theorie/ Reifeniveau 6
- Mathematrix: AT BRP/ Theorie/ Reifeniveau 7
- Mathematrix: AT PSA/ Aufgabenheft Antworten
- Mathematrix: AT PSA/ Probetest/ 01/ E2
- Mathematrix: AT PSA/ Probetest/ 07/ G1
- Mathematrix: Antworten nach Thema/ Folgen
- Mathematrix: Antworten nach Thema/ Integralrechnung
- Mathematrix: Antworten nach Thema/ Vektoren
- Mathematrix: Aufgabensammlung/ Doppelbrüche
- Mathematrix: Aufgabensammlung/ Erweitern
- Mathematrix: Aufgabensammlung/ Folgen
- Mathematrix: Aufgabensammlung/ Kürzen mit Primfaktorzerlegung
- Mathematrix: Aufgabensammlung/ Regression
- Mathematrix: Aufgabensammlung/ Vorrang mit Klammern in Klammern
- Mathematrix: BY GYM/ Theorie nach Thema/ Integralrechnung
Globale Dateiverwendung
Die nachfolgenden anderen Wikis verwenden diese Datei:
- Verwendung auf en.wikibooks.org